Activity Prediction Based on Deep Learning Techniques

Author:

Park Jinsoo1,Song Chiyou2,Kim Mingi2,Kim Sungroul2ORCID

Affiliation:

1. Department of Industrial Cooperation, Soonchunhyang University, Asan 31538, Republic of Korea

2. Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea

Abstract

Studies on real-time PM2.5 concentrations per activity in microenvironments are gaining a lot of attention due to their considerable impact on health. These studies usually assume that information about human activity patterns in certain environments is known beforehand. However, if a person’s activity pattern can be inferred reversely using environmental information, it can be easier to access the levels of PM2.5 concentration that affect human health. This study collected the actual data necessary for this purpose and designed a deep learning algorithm that can infer human activity patterns reversely using the collected dataset. The dataset was collected based on a realistic scenario, which includes activity patterns in both indoor and outdoor environments. The deep learning models used include the well-known multilayer perception (MLP) model and a long short-term memory (LSTM) model. The performance of the designed deep learning algorithm was evaluated using training and test data. Simulation results showed that the LSTM model has a higher average test accuracy of more than 15% compared to the MLP model, and overall, we were able to achieve high accuracy of over 90% on average.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3