Improving Forest Canopy Height Estimation Using a Semi-Empirical Approach to Overcome TomoSAR Phase Errors

Author:

Luo Hongbin12ORCID,Yue Cairong12,Yuan Hua12,Chen Si1

Affiliation:

1. College of Forestry, Southwest Forestry University, Kunming 650224, China

2. Forestry 3S Engineering Technology Research Center, Southwest Forestry University, Kunming 650224, China

Abstract

Forest canopy height is an important forest indicator parameter. Synthetic aperture radar tomography (TomoSAR) is an effective method to characterize forest canopy height and describe forest 3D structure; however, the residual phase error of TomoSAR affects the focus of the relative reflectance and can lead to errors in forest canopy height estimation. Therefore, this paper proposes a semi-empirical method to overcome the residual phase effects on forest canopy height estimation. In this study, we used airborne multi-baseline UAVSAR data to estimate forest canopy height via TomoSAR techniques and applied a semi-empirical method to improve forest canopy height estimation without phase calibration to mitigate the effects of phase error. The process is divided into three stages: the first step uses a semi-empirical method to initially determine the optimal relative reflectance loss threshold (K) by excluding the inverse extremes; in the second and third steps, the percentile height was used to gradually reduce the height interval between the upper and lower envelopes to minimize overestimation of extreme values and the lower vegetation. When the root mean square error (RMSE) was minimized, the percentile combinations were determined between the inversion results and a LiDAR dataset of the area. The results show that the canopy height estimation results are not satisfactory when relying solely on the K value to estimate the height difference between the envelope at the top of the forest and the ground; the best result was obtained when K = 0.4, but the corresponding R2 value was only 0.13, and the RMSE was 15.23 m. In our proposed method, the K value is determined as 0.3 by excluding the extreme values of the inversion result in the initial step—the corresponding R2 and RMSE values were 0.59 and 10.73 m, respectively, representing an RMSE decrease of 29.54% relative to the initial K value. After two steps of correction overestimation, the inversion accuracy was significantly improved with an R2 value of 0.65 and an RMSE of 9.69 m, corresponding to an RMSE decrease of 36.38%. Overall, the findings of the study represent an important reference for optimizing future spaceborne TomoSAR forest canopy height estimates.

Funder

National Natural Science Foundation of China

Major Science and Technology Special Project of Yunnan Provincial Science and Technology Department

Scientific Research Fund Project of Yunnan Provincial Education Department

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3