A Finite-Element-Analysis-Based Feasibility Study for Optimizing Pantograph Performance Using Aluminum Metal Matrix Composites

Author:

Ilunga Masengo1ORCID,Agarwal Abhishek2ORCID

Affiliation:

1. Department of Civil Engineering, University of South Africa, Pretoria 1709, South Africa

2. Mechanical Engineering Department, College of Science and Technology, Royal University of Bhutan, Phuentsholing 21101, Bhutan

Abstract

A pantograph is a key component on the tops of trains that allows them to efficiently tap electricity from power lines and propel them. This study investigates the possibility of using metal matrix composites (MMCs), specifically aluminum MMCs, as a material for making pantograph parts regarding the dynamics of the train’s movement and external meteorological conditions. In this study, a computer-aided design (CAD) model is created using PTC Creo design software and moves to detailed finite element analysis (FEA) simulations executed by the ANSYS software suite. These simulations are important in examining how the dynamic performance of pantographs can vary. The incorporation of Al MMC materials into the structure of the pantograph resulted in significant improvements in structural robustness, with equal stress reduced by up to 0.18%. Similarly, aluminum MMC materials reduced the strain energy by 0.063 millijoules. The outcomes not only give a new perspective to the implementation of modern materials but also provide a breakthrough concept to improve efficiency and increase the service life of pantographs. This study marks a significant milestone in the theoretical development of essential train systems, furnishing eminent perspectives toward the tactical development of transportation infrastructure by suggesting new avenues for the smooth incorporation of smart materials in railway transportation, which would contribute to a more sustainable and reliable future.

Funder

University of South Africa

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3