Proposal of Industry 5.0-Enabled Sustainability of Product–Service Systems and Its Quantitative Multi-Criteria Decision-Making Method

Author:

Jin Qichun1,Chen Huimin1,Hu Fuwen2ORCID

Affiliation:

1. School of Industrial Internet, Wuxi City Vocational and Technical College, Wuxi 214153, China

2. School of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China

Abstract

In the wake of Industry 4.0, the ubiquitous internet of things provides big data to potentially quantify the environmental footprint of green products. Further, as the concept of Industry 5.0 emphasizes, the increasing mass customization production makes the product configurations full of individuation and diversification. Driven by these fundamental changes, the design for sustainability of a high-mix low-volume product–service system faces the increasingly deep coupling of technology-driven product solutions and value-driven human-centric goals. The multi-criteria decision making of sustainability issues is prone to fall into the complex, contradictory, fragmented, and opaque flood of information. To this end, this work presents a data-driven quantitative method for the sustainability assessment of product–service systems by integrating analytic hierarchy process (AHP) and data envelopment analysis (DEA) methods to measure the sustainability of customized products and promote the Industry 5.0-enabled sustainable product–service system practice. This method translates the sustainability assessment into a multi-criteria decision-making problem, to find the solution that meets the most important criteria while minimizing trade-offs between conflicting criteria, such as individual preferences or needs and the life cycle sustainability of bespoke products. In the future, the presented method can extend to cover more concerns of Industry 5.0, such as digital-twin-driven recyclability and disassembly of customized products, and the overall sustainability and resilience of the supply chain.

Funder

soft science research topic of Wuxi Science Association

Qing Lan Project of Jiangsu Province of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3