The Prediction of Flow Stress in the Hot Compression of a Ni-Cr-Mo Steel Using Machine Learning Algorithms

Author:

Pan Tao1ORCID,Song Chengmin1,Gao Zhiyu2,Xia Tian3,Wang Tianqi1

Affiliation:

1. Institute of Structural Steel Research, Central Iron and Steel Research Institute, Beijing 100081, China

2. School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China

3. College of Materials Science & Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

The constitutive model refers to the mapping relationship between the stress and deformation conditions (such as strain, strain rate, and temperature) after being loaded. In this work, the hot deformation behavior of a Ni-Cr-Mo steel was investigated by conducting isothermal compression tests using a Gleeble-3800 thermal simulator with deformation temperatures ranging from 800 °C to 1200 °C, strain rates ranging from 0.01 s−1 to 10 s−1, and deformations of 55%. To analyze the constitutive relation of the Ni-Cr-Mo steel at high temperatures, five machine learning algorithms were employed to predict the flow stress, namely, back-propagation artificial neural network (BP-ANN), Random Committee, Bagging, k-nearest neighbor (k-NN), and a library for support vector machines (libSVM). A comparative study between the experimental and the predicted results was performed. The results show that correlation coefficient (R), root mean square error (RMSE), mean absolute value error (MAE), mean square error (MSE), and average absolute relative error (AARE) obtained from the Random Committee on the testing set are 0.98897, 8.00808 MPa, 5.54244 MPa, 64.12927 MPa2 and 5.67135%, respectively, whereas the metrics obtained via other algorithms are all inferior to the Random Committee. It suggests that the Random Committee can predict the flow stress of the steel more effectively.

Funder

Basic Scientific Research Project of Education Department of Liaoning Province for Colleges and Universities

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3