Novel Sodium Chloride/Aluminum Oxide Powder-Composite Structure with High Shape-Retention Performance for the Encapsulation of a High-Temperature Phase-Change Material

Author:

Yamashita Seiji1,Fuhai Bao2,Shenghao Liao2,Kita Hideki2,Hong Fangjun3

Affiliation:

1. Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

2. Department of Chemical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

3. School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China

Abstract

Inorganic phase-change materials (PCMs) with high melting points have great potential for thermal energy storage systems. Sodium chloride (NaCl) has a high melting point (801 °C) and high latent-heat-storage density (482 kJ/kg). However, it is difficult to encapsulate NaCl using a sintered ceramic shell because of its good wettability against ceramics and high volume-expansion capacity during melting. In this study, a novel NaCl/Al2O3 powder-composite structure was developed as highly stable PCM core material for highly stable encapsulation. The shape-retention performance and the mechanism of NaCl/Al2O3 powder-composite structure during melting were investigated. We have successfully fabricated a NaCl/Al2O3 powder-composite structure, which has a higher NaCl volume ratio of 80 vol% than conventional techniques. The gel-like network structure of Al2O3 particles in molten NaCl was a key structure to keep the shape of the composite ball and to prevent the evaporation of molten NaCl.

Funder

JST-SICORP

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3