Response Surface Methodology—Central Composite Design Optimization Sugarcane Bagasse Activated Carbon under Varying Microwave-Assisted Pyrolysis Conditions

Author:

Chen Xuexue1,Pei Yunji1,Wang Xinran1,Zhou Wenlin2,Jiang Li1ORCID

Affiliation:

1. School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China

2. Laboratory and Equipment Management Center, Jiangsu University of Technology, Changzhou 213001, China

Abstract

Sugarcane bagasse (SB) is a widely available agro-industrial waste residue in China that has the potential to be converted into a cost-effective and renewable adsorbent. In this study, activated carbon (AC) was prepared from SB by microwave vacuum pyrolysis using H3PO4 as the activator. To enhance the sorption selectivity and yield, the pyrolysis process of SB-activated carbon (SBAC) should be well-designed. Central composite design was employed as an optimized experiment design, and response surface methodology was used to optimize the process parameters for maximized SBAC yield and its iodine number. The results showed that the optimized parameters obtained for the SBAC are 2.47 for the impregnation ratio (IR), 479.07 W for microwave power (MP), 23.86 mm for biomass bed depth, and 12.96 min for irradiation time, with responses of 868.7 mg/g iodine number and 43.88% yield. The anticipated outcomes were substantiated, revealing a marginal 5.4% variance in yield and a mere 1.9% discrepancy in iodine number from the forecasted values. The synthesized adsorbents underwent comprehensive characterization through instrumental methodologies, including FT-IR, BET, and SEM. The SBAC produced by the pyrolysis method contained a regular and homogeneous porous structure with a specific surface area of up to 1697.37 m2/g and a total 1.20 cm 3/g volume, which has favorable adsorption of toxic and harmful substances in the environment.

Funder

education department of National Natural Science Foundation of China

Basic Research Program of Jiangsu Province

Changzhou Science and Technology Program (International Science and Technology Cooperation) Project

Jiangsu Graduate Practice Innovation Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3