MapCleaner: Efficiently Removing Moving Objects from Point Cloud Maps in Autonomous Driving Scenarios

Author:

Fu HaoORCID,Xue Hanzhang,Xie Guanglei

Abstract

Three-dimensional (3D) point cloud maps are widely used in autonomous driving scenarios. These maps are usually generated by accumulating sequential LiDAR scans. When generating a map, moving objects (such as vehicles or moving pedestrians) will leave long trails on the assembled map. This is undesirable and reduces the map quality. In this paper, we propose MapCleaner, an approach that can effectively remove the moving objects from the map. MapCleaner first estimates a dense and continuous terrain surface, based on which the map point cloud is then divided into a noisy part below the terrain, the terrain, and the object part above the terrain. Next, a specifically designed moving points identification algorithm is performed on the object part to find moving objects. Experiments are performed on the SemanticKITTI dataset. Results show that the proposed MapCleaner outperforms state-of-the-art approaches on all five tested SemanticKITTI sequences. MapCleaner is a learning-free method and has few parameters to tune. It is also successfully evaluated on our own dataset collected with a different type of LiDAR.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Premapping of Dynamic Indoor Construction Sites Using Prior Construction Progress Video to Enhance UGV Path Planning;Journal of Computing in Civil Engineering;2024-09

2. A Vertical Distribution Descriptor Based on Static Point Cloud Map Building from 3D LiDAR Data;2024 4th Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS);2024-02-24

3. RH-Map: Online Map Construction Framework of Dynamic Object Removal Based on 3D Region-Wise Hash Map Structure;IEEE Robotics and Automation Letters;2024-02

4. Similar but Different: A Survey of Ground Segmentation and Traversability Estimation for Terrestrial Robots;International Journal of Control, Automation and Systems;2024-02

5. A Dynamic Object Removal and Reconstruction Algorithm for Point Clouds;2023 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI);2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3