Bistatic Radar Scattering from Non-Gaussian Height Distributed Rough Surfaces

Author:

Yang Ying,Chen Kun-ShanORCID,Wang Suyun

Abstract

In modeling a rough surface, it is common to assume a Gaussian height distribution. This hypothesis cannot describe an eventual asymmetry between crests and troughs of natural surfaces. We analyzed the bistatic scattering from a rough surface with non-Gaussian height distributions using the Kirchhoff scattering theory. Two extreme cases of Gamma-distributed surfaces were compared in particular: exponential and Gaussian distributions. The bistatic angular dependence was examined under various root mean square (RMS) heights and power spectrum densities. Contribution sources to the coherent and incoherent scattering components were singled out relating to the surface height distribution. For an exponential height surface, the coherent scattering strengthens even as the surface becomes rough. The non-Gaussian effect on the incoherent scattering is connected with surface power spectrum density. The height distribution impacts differ in the different regions of the bistatic scattering plane and thus complicate the differentiation of the scattering patterns due to height distribution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference24 articles.

1. An Introduction to Random Vibration and Spectral Analysis;Newland,1984

2. An electromagnetic fractal-based model for the study of fading

3. Sea Clutter: Scattering, the K-Distribution and Radar Performance;Ward,2006

4. Speckle Phenomena in Optics: Theory and Applications;Goodman,2007

5. Radar Imaging Statistics of Non-Gaussian Rough Surface: A Physics-Based Simulation Study

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3