Proximal Soil Sensing of Low Salinity in Southern Xinjiang, China

Author:

Peng Jie,Li ShuoORCID,Makar Randa S.ORCID,Li HongyiORCID,Feng ChunhuiORCID,Luo Defang,Shen Jiali,Wang Ying,Jiang Qingsong,Fang Linchuan

Abstract

Measuring the soil salinity using visible and near-infrared (vis–NIR) reflectance spectra is considered a fast and cost-effective method. For monitoring purposes, estimating soils with low salinity measured as electrical conductivity (EC) using vis–NIR spectra is still understudied. In this research, 399 legacy soil samples from six regions of Southern Xinjiang, China with low EC values were used. Reflectance spectra were measured in the laboratory on dried and ground soil samples using a portable vis–NIR spectrometer. By using 10-fold cross-validation, three algorithms–partial least-squares regression (PLSR), random forest (RF), and Cubist–were employed to develop statistical models of EC. The model performance evaluation was obtained by the relative importance of variants. In terms of accuracy assessment of soil EC prediction, the results demonstrated that the Cubist model performed better (R2 = 0.67, RMSE = 0.16 mS/cm, RPIQ = 2.28) than both PLSR and RF. Despite similar variants for modelling, the RF model performed somewhat better than that of the PLSR. Additionally, the 610 nm and 790 nm wavelengths only demonstrated significant promise for predicting low soil EC values when used in the Cubist mode. The current research recommends the use of Cubist to estimate the low soil salinity using the vis–NIR reflectance spectra.

Funder

Tarim University President's Fund

Chinese Universities Scientific Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3