Study on Hydrologic Effects of Land Use Change Using a Distributed Hydrologic Model in the Dynamic Land Use Mode

Author:

Sun Qingyan,Lu Chuiyu,Guo Hui,Yan Lingjia,He Xin,Qin Tao,Wu Chu,Luan Qinghua,Zhang Bo,Li Zepeng

Abstract

It is reasonable to simulate the hydrologic cycle in regions with drastic land use change using a distributed hydrologic model in the dynamic land use mode (dynamic mode). A new dynamic mode is introduced into an object-oriented modularized model for basin-scale water cycle simulation (MODCYCLE), a distributed hydrologic model based on sub-watersheds, and the hydrological response unit (HRU). The new mode can linearly interpolate data for the years without land use data and consistently transfer HRU water storage between two adjacent years after a land use data update. The hydrologic cycle simulation of the Sanjiang Plain in China was carried out from 2000 to 2014 in the dynamic mode using land use maps of 2000, 2005, 2010, and 2014. Through calibration and validation, the performance of the model reached a satisfactory level. Replacing the land use data of the calibrated model using that of the year 2000, a comparison model in the static land use mode (static mode) was built (i.e., land use unchanged since 2000). The hydrologic effects of land use change were analyzed using the two models. If the land use pattern remained unchanged from 2000, despite the average annual runoff increasing by 4% and the average annual evapotranspiration decreasing by 4% in this region only, the groundwater storage of the plain areas in 2014 would increase by 4.6 bil. m3 compared to that in 2000, rather than the actual decrease of 4.7 bil. m3. The results show that the fluxes associated with groundwater are obviously more disturbed by land use change in the Sanjiang Plain. This study suggests that the dynamic mode should be used to simulate the hydrologic cycle in regions with drastic land use change, and the consistent transfer of HRU water storage may be considered in the dynamic mode.

Funder

National Key Research and Development Program of China

Applied Technology Research and Development Program of Heilongjiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3