Abstract
Groundwater evapotranspiration (ETG) estimation is an important issue in semiarid areas for groundwater resources management and environmental protection. It is widely estimated by diurnal water table fluctuations. In this study, the ETG at four sites with different plants was estimated using both diurnal water table and soil moisture fluctuations in the northeastern Mu Us sandy region, in order to identify the groundwater utilization strategy by different dominant phreatophytes. Groundwater level was monitored by ventilatory pressure transducers (Solinst LevelVent, Solinst Canada Ltd.; accuracy ±3 mm), while soil moisture was monitored using EM50 loggers (Decagon Devices Inc., Pullman, USA) in K1 and K14 and simulated by Hydrus-1D in other observation wells. A significant spatial variation of ETG was found within a limited area, indicating a poor representativeness of site ETG for regional estimation. The mean values of ETG are 4.01 mm/d, 6.03 mm/d, 8.96 mm/d, and 12.26 mm/d at the Achnatherum splendens site, Carex stenophylla site, Salix psammophila site and Populus alba site, respectively, for the whole growing season. ETG is more sensitive to depth to water table (DWT) in the Carex stenophylla site than in the Achnatherum splendens site for grass-dominated areas and more sensitive to DWT in the Populus alba site than in Salix psammophila site for tree-dominated areas. Groundwater extinction depths are estimated at 4.1 m, 2.4 m, 7.1 m, and 2.9 m in the Achnatherum splendens site, Carex stenophylla site, Salix psammophila site and Populus alba site, respectively.
Funder
National Natural Science Foundation of China
Innovation Capability Support Program of Shaanxi
China Geological Survey
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献