Soil-Gas Diffusivity-Based Characterization of Variably Saturated Agricultural Topsoils

Author:

Abeysinghe A. M. S. N.ORCID,Lakshani M. M. T.,Amarasinghe U. D. H. N.,Li YuanORCID,Deepagoda T. K. K. ChaminduORCID,Fu Wei,Fan Jun,Yang TingORCID,Ma Xiaoyi,Clough Tim,Elberling BoORCID,Smits Kathleen

Abstract

Soil-gas diffusivity and its variation with soil moisture plays a fundamental role in diffusion-controlled migration of climate-impact gases from different terrestrial agroecosystems including cultivated soils and managed pasture systems. The wide contrast in soil texture and structure (e.g., density, soil aggregation) in agriculture topsoils (0–10 cm) makes it challenging for soil-gas diffusivity predictive models to make accurate predictions across different moisture conditions. This study characterized gas diffusivity and gas-phase tortuosity in soils sampled from managed pasture and cultivated sites in Sri Lanka at 0–10 cm depth, together with selected soil-gas diffusivity data from the literature. Soil-gas diffusivity was measured using a one-chamber diffusion apparatus using N2 and O2 as experimental gases. The measured diffusivity, together with literature data representing both intact and repacked soils, were tested against five existing widely known gas diffusivity predictive models. The tested models tended to mischaracterize the two-region behavior in some of the aggregated soils, suggesting the need of soil-specific diffusivity models to better describe gas diffusivity in agricultural soils. We suggested a new parametric two-region model, developed in line with literature-based models, to represent both unimodal and bimodal/two-region behavior of selected soils. The new model statistically outperformed the existing predictive models for both intact and repacked soils and, hence, demonstrated its applicability to better characterize site-specific greenhouse gas emissions under different soil water regimes.

Funder

Asia-Pacific Network for Global Change Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3