Biomathematical Model for Water Quality Assessment: Macroinvertebrate Population Dynamics and Dissolved Oxygen

Author:

Pineda-Pineda Jair J.ORCID,Muñoz-Rojas JesúsORCID,Morales-García Y. ElizabethORCID,Hernández-Gómez Juan C.ORCID,Sigarreta José M.ORCID

Abstract

Sustainable water management is important to ensure its availability for future generations. The study of water quality is fundamental for this purpose. Assessing the health of aquatic ecosystems through bioindicators has been shown to be reliable and inexpensive. The objective of this work was to evaluate water quality through a biomathematical model that involves environmental stress indicator organisms and their close relationship with dissolved oxygen. In this direction, a system of differential equations describing the population dynamics of aquatic macroinvertebrates under the influence of dissolved oxygen is proposed. The model is validated by its application in the Coyuca Lagoon, Mexico. Likewise, population changes over time were represented, which allowed us to deduce that the increase or decrease in the aeration/oxygenation rate significantly affects the population dynamics of the bioindicator organisms. In addition, to classify water quality, a one-to-one correspondence was established between water quality and the equilibrium points of the system of differential equations. The results obtained allow inferring that the proposed techniques are useful for the study of water quality since they can predict significant changes in the ecosystem and provide researchers and water managers with tools for decision making.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference56 articles.

1. Transforming our world: The 2030 agenda for sustainable development,2015

2. A review of water quality index models and their use for assessing surface water quality;Uddin;Ecol. Indic.,2021

3. A recreational water quality index using chemical, physical and microbiological parameters

4. Online characterization of bacterial processes in drinking water systems

5. Handbook of Ecological Indicators for Assessment of Ecosystem Health;Jørgensen,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3