Coordinated Control Strategy for Drive Mode Switching of Double Rotor In-Wheel Motor Based on MPC and Control Allocation

Author:

Li Junmin1,Wang Junchang1,Liu Jianhao1,Ren Chongyang1

Affiliation:

1. School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455000, China

Abstract

To overcome the problems existing in the practical application of traditional in-wheel motors used for electric vehicles, an integrated double rotor in-wheel motor was proposed, which can realize three drive modes to meet variable operating condition requirements of the vehicle. The process of switching between different drive modes affects the ride comfort of a vehicle. Taking the mode switching from a single inner motor drive to a dual-motor coupling drive as a research object, a dynamic modeling method of drive mode switching based on the switching system was proposed. According to the critical conditions of each state transition, the switching rules expressed by the segmental constant function were designed. At the engagement stage of electromagnetic clutch II, the torque coordination control strategy based on model predictive control (MPC) and control allocation was proposed. The simulation results show that the proposed strategy can effectively reduce the impact degree of a vehicle and the slipping-friction work of the clutch on the premise of ensuring the fast response of mode switching and the steady increase in vehicle speed. The switching quality of the mode-switching process is effectively improved. In addition, the drive mode switching control of the double rotor in-wheel motor prototype was tested, which proves its ability to operate in multi-drive mode.

Funder

Science and Technology Development Program of Henan, China

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Simulation of Hub Motor Driven Electric Heavy-Duty Trucks Based on Cruise;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

2. Optimal design and control of permanent magnet assisted dual rotor motor;Frontiers in Energy Research;2023-09-26

3. Optimal Scheduling of Electric Vehicles in Residential Distribution Systems;2023 International Conference on Circuit Power and Computing Technologies (ICCPCT);2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3