Structural and Electrochemical Behaviors of ZnO Structure: Effect of Different Zinc Precursor Molarity

Author:

Mohamed Ruziana,Anuar Muhammad Syakir Azri

Abstract

This research synthesised zinc oxide (ZnO) structure by a hydrothermal method. ZnO samples were prepared using different molarities of zinc (Zn) precursor, ranging from 0.10 to 0.16 M. Structural and morphological properties were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns show that all samples are prominently grown along the three diffraction peaks at (001), (002) and (101) planes. The ZnO sample with 0.16 M Zn precursor has the highest peak orientation along the (002) plane. The average crystallite sizes for the ZnO structure with 0.10, 0.12, 0.14 and 0.16 M precursor are 48, 51, 49 and 31 nm, respectively. ZnO sample prepared at 0.16 M has the smallest crystallite size and the lowest tensile strain. The SEM images show that the ZnO samples are randomly oriented with average diameters of 209, 325, 295 and 348 nm when using 0.10, 0.12, 0.14 and 0.16 M of the precursor, respectively. The electrochemical behaviour of the ZnO structure was determined through cyclic voltammetry (CV) measurement. In the CV curve, the calculated specific capacitance for the ZnO sample prepared at 0.16 M has the highest value of 3.87 Fg−1. The ZnO sample prepared at 0.10 M has the lowest specific capacitance value of 2.11 Fg−1. Therefore, changing the molarity of the Zn precursor could change the structural and electrochemical properties. ZnO sample prepared with 0.16 M of the precursor provides the optimal result.

Funder

MOHE

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3