Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@SPARC_LAB

Author:

Stellato FrancescoORCID,Anania Maria Pia,Balerna AntonellaORCID,Botticelli Simone,Coreno MarcelloORCID,Costa Gemma,Galletti MarioORCID,Ferrario Massimo,Marcelli AugustoORCID,Minicozzi VeliaORCID,Morante SilviaORCID,Pompili RiccardoORCID,Rossi GiancarloORCID,Shpakov Vladimir,Villa FabioORCID,Cianchi AlessandroORCID

Abstract

EuPRAXIA is a leading European project aimed at the development of a dedicated, ground-breaking, ultra-compact accelerator research infrastructure based on novel plasma acceleration concepts and laser technology and on the development of their users’ communities. Within this framework, the Laboratori Nazionali di Frascati (LNF, INFN) will be equipped with a unique combination of an X-band RF LINAC generating high-brightness GeV-range electron beams, a 0.5 PW class laser system and the first fifth-generation free electron laser (FEL) source driven by a plasma-based accelerator, the EuPRAXIA@SPARC_LAB facility. Wiggler-like radiation emitted by electrons accelerated in plasma wakefields gives rise to brilliant, ultra-short X-ray pulses, called betatron radiation. Extensive studies have been performed at the FLAME laser facility at LNF, INFN, where betatron radiation was measured and characterized. The purpose of this paper is to describe the betatron spectrum emitted by particle wakefield acceleration at EuPRAXIA@SPARC_LAB and provide an overview of the foreseen applications of this specific source, thus helping to establish a future user community interested in (possibly coupled) FEL and betatron radiation experiments. In order to provide a quantitative estimate of the expected betatron spectrum and therefore to present suitable applications, we performed simple simulations to determine the spectrum of the betatron radiation emitted at EuPRAXIA@SPARC_LAB. With reference to experiments performed exploiting similar betatron sources, we highlight the opportunities offered by its brilliant femtosecond pulses for ultra-fast X-ray spectroscopy and imaging measurements, but also as an ancillary tool for designing and testing FEL instrumentation and experiments.

Funder

European Union

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3