Abstract
We experimentally demonstrate that the excitation of a silicon-doped yttrium-iron garnet film by femtosecond laser pulses triggers a magnetization precession with an amplitude determined by the external magnetization direction. The maximum efficiency is achieved at the pump wavelength corresponding to the absorption maximum due to doping with silicon ions. Based on the azimuthal dependences of the precession amplitude and frequency, it is shown that the magnetization dynamics is induced by a thermal disruption of the magnetocrystalline anisotropy. By modeling hysteresis loops, it was found that the silicon doping leads to a decrease in the value of the exchange interaction in the film and an increase in the anisotropy field.
Funder
Russian Foundation for Basic Research
RTU MIREA
Ministry of Education and Science of the Russian Federation
Ministry of Science and Higher Education of the Russian Federation under Agreement
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献