Physicochemical Properties of Ti3+ Self-Doped TiO2 Loaded on Recycled Fly-Ash Based Zeolites for Degradation of Methyl Orange

Author:

Supelano García IvánORCID,Palacio Gómez Carlos AndrésORCID,Weber Marc H.,Saavedra Gaona Indry MilenaORCID,Castañeda Martínez Claudia PatriciaORCID,Martínez Zambrano José JobannyORCID,Rojas Sarmiento Hugo Alfonso,Munevar Cagigas Julian Andrés,Avila Marcos A.ORCID,Rettori CarlosORCID,Parra Vargas Carlos Arturo,Mejía Gómez Julieth Alexandra

Abstract

The extensive production of coal fly ash by coal combustion is an issue of concern due to its environmental impact. TiO2-zeolite composites were synthesized, at low cost, using recycled coal fly ash from a local thermoelectric power plant to produce the zeolite using the hydrothermal method. TiO2 was loaded by means of the impregnation method using ethanol and titanium isopropoxide between 8.7 and 49.45 wt% TiO2. The samples were characterized by X-ray diffraction, Raman, electron spin resonance, high-resolution transmission electron microscopy, N2 adsorption-desorption, doppler broadening of annihilation radiation, and diffuse reflectance techniques, and the photocatalytic activity of the composites was evaluated according to the degradation of methyl orange under UV light. The results show that TiO2 crystallizes in the anatase phase with a Ti3+ oxidation state, without post-treatment. TiO2 particles were located within the pores of the substrate and on its surface, increasing the surface area of the composites in comparison with that of the substrates. Samples with TiO2 at 8.7 and 25 wt% immobilized on hydroxysodalite show the highest degradation of methyl orange among all studied materials, including the commercial TiO2 Degussa P25 under UV light.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3