Abstract
This paper presents a procedure for the closed-loop stability analysis of a certain variant of the strategy called Fuzzy Model-Based Predictive Control (FMBPC), with a model of the Takagi-Sugeno type, applied to the wastewater treatment process known as the Activated Sludge Process (ASP), with the aim of simultaneously controlling the substrate concentration in the effluent (one of the main variables that should be limited according to environmental legislations) and the biomass concentration in the reactor. This case study was chosen both for its environmental relevance and for special process characteristics that are of great interest in the field of nonlinear control, such as strong nonlinearity, multivariable nature, and its complex dynamics, a consequence of its biological nature. The stability analysis, both of fuzzy systems (FS) and the very diverse existing strategies of nonlinear predictive control (NLMPC), is in general a mathematically laborious task and difficult to generalize, especially for processes with complex dynamics. To try to minimize these difficulties, in this article, the focus was placed on the mathematical simplification of the problem, both with regard to the mathematical model of the process and the stability analysis procedures. Regarding the mathematical model, a state-space model of discrete linear time-varying (DLTV), equivalent to the starting fuzzy model (previously identified), was chosen as the base model. Furthermore, in a later step, the DLTV model was approximated to a local model of type discrete linear time-invariant (DLTI). As regards the stability analysis itself, a computational method was developed that greatly simplified this difficult task (in a local environment of an operating point), compared to other existing methods in the literature. The use of the proposed method provides useful conclusions for the closed-loop stability analysis of the considered FMBPC strategy, applied to an ASP process; at the same time, the possibility that the method may be useful in a more general way, for similar fuzzy and predictive strategies, and for other complex processes, was observed.
Funder
Ministerio de Ciencia e Innovación
Samuel Solórzano Foundation
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference105 articles.
1. Industrial applications of model based predictive control
2. Model Predictive Control;Camacho,1999
3. Model-Based Predictive Control: A Practical Approach;Rossiter,2003
4. Nonlinear Predictive Control and Moving Horizon Estimation—An Introductory Overview;Allgower,1999
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献