Abstract
On research of plasma assisted combustion, effects of electric and plasma discharges in DC, AC and pulse forms on reattachment of a lifted flame have attracted extensive attention. However, the detailed plasma assisted reattachment process and mechanism and roles of induced corona discharge and corona-induced ozone on the reattachment process are still unclear and undocumented. The forced reattachment process of a lifted diffusion jet flame by repetitive DC electric pulse discharges was experimentally investigated in this study using high-speed flame imaging, conditioned particle image velocimetry (PIV), and planar ozone concentration imaging. The forced reattachment process can be divided into three stages in sequence: ionic wind prior to corona initiation, corona initiation, and corona enhancement propagation. The conditioned PIV results showed that the instantaneous flame base propagation velocity is sufficiently enhanced beyond the laminar burning velocity for high pulse-repetition-frequency (PRF) cases at the instant of pulse discharge (on pulse) due to the enhanced oxidation of the corona induced ozone. By observing the dynamic flame-base behavior and evolution characteristics of the short-lived corona induced ozone for various PRFs, the novel forced reattachment process and mechanism of a lifted jet flame induced by repetitive DC electric pulse discharges is proposed.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献