Defogging Algorithm Based on Polarization Characteristics and Atmospheric Transmission Model

Author:

Ling Feng,Zhang Yan,Shi Zhiguang,Zhang Jinghua,Zhang Yu,Zhang Yi

Abstract

We propose a polarized image defogging algorithm according to the sky segmentation results and transmission map optimization. Firstly, we propose a joint sky segmentation method based on scene polarization information, gradient information and light intensity information. This method can effectively segment the sky region and accurately estimate the global parameters such as atmospheric polarization degree and atmospheric light intensity at infinite distance. Then, the Gaussian filter is used to solve the light intensity map of the target, and the information of the polarization degree of the target is solved. Finally, based on the segmented sky region, a three-step transmission optimization method is proposed, which can effectively suppress the halo effect in the reconstructed image of large area sky region. Experimental results shows that defogging has a big improvement in the average gradient of the image and the grayscale standard deviation. Therefore, the proposed algorithm provides strong defogging and can improve the optical imaging quality in foggy scenes by restoring fog-free images.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3