Abstract
This paper proposes a methodology for sentiment analysis with emphasis on the emotional aspects of people visiting the Herculaneum Archaeological Park in Italy during the period of the COVID-19 pandemic. The methodology provides a valuable means of continuous feedback on perceived risk of the site. A semantic analysis on Twitter text messages provided input to the risk management team with which they could respond immediately mitigating any apparent risk and reducing the perceived risk. A two-stage approach was adopted to prune a massively large dataset from Twitter. In the first phase, a social network analysis and visualisation tool NodeXL was used to determine the most recurrent words, which was achieved using polarity. This resulted in a suitable subset. In the second phase, the subset was subjected to sentiment and emotion mapping by survey participants. This led to a hybrid approach of using automation for pruning datasets from social media and using a human approach to sentiment and emotion analysis. Whilst suffering from COVID-19, equally, people suffered due to loneliness from isolation dictated by the World Health Organisation. The work revealed that despite such conditions, people’s sentiments demonstrated a positive effect from the online discussions on the Herculaneum site.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献