Abstract
Understanding the mechanical response and failure behaviors of thin plates under impact loading is helpful for the design and improvement of thin plate structures in practical applications. The response of a copper plate subjected to underwater impulsive loading has been studied in fluid-structure interaction (FSI) experiments. Three typical copper plates, (a) without a pre-notch, (b) with a cross-shaped pre-notch (+), and (c) with a ring-shaped pre-notch (○) were selected. A high-speed photography system recorded the full-field shape and displacement profiles of the specimens in real time. The 3D transient deformation fields’ measurements were obtained using a 3D digital image correlation (DIC) technique. Strain results from DIC and the strain gauges technique were in good agreement. A dimensionless deflection was used to analyze the effect of plate thickness and loading intensity on the deformation of the copper plates. The typical failure modes of different copper plates were identified. The test plates exhibited large ductile deformation (mode I ) for copper plates without a pre-notch, and large ductile deformation with local necking (mode I c ), splitting (mode II ), splitting and tearing (mode II c ), and fragment (mode III ) for the copper plate with a pre-notch.
Funder
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference36 articles.
1. Blast loaded plates
2. A review of underwater explosion phenomena;Fox;Comp. Underwater Explos. Res.,1947
3. Non-linear dynamic analysis assessment of explosively loaded submarine hull panels;Ahmed;Shock Vib. Bull.,1990
4. Deformation and rupture of thin rectangular plates subjected to underwater shock
5. Non-linear transient dynamic response of rectangular plates under shock loading
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献