Life Cycle Assessment of an On-Road Dynamic Charging Infrastructure

Author:

Marmiroli BenedettaORCID,Dotelli GiovanniORCID,Spessa EzioORCID

Abstract

On road dynamic charging represents a possible solution for the electrification of the transport sector and eventually, for its decarbonisation. However, only a few studies have evaluated the environmental impact of this technology. A detailed life cycle assessment (LCA) of charging infrastructure is missing. This study is a life cycle assessment of the construction and maintenance of an electrified road (e-road) equipped with dynamic wireless power transfer technology (DWPT). The data from an e-road tested in a test site in Susa (Italy) have been adapted for motorway applications. The results show the relevance of wireless power transfer components compared to traditional components and materials. The wireless power transfer (WPT) component production in fact accounts for more than 70% of the impacts in the climate change category, even though it represents less than 1% weight. Maintenance is the phase with the highest impact due to the structural features of the e-road. However, there is considerable uncertainty about this value which still requires further refinement when more data from e-road monitoring are available.

Funder

Seventh Framework Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3