Fault Diagnosis of Rolling Bearings in Rail Train Based on Exponential Smoothing Predictive Segmentation and Improved Ensemble Learning Algorithm

Author:

Han Lu,Yu Chongchong,Liu Cuiling,Qin Yong,Cui Shijie

Abstract

The rolling bearing is a key component of the bogie of the rail train. The working environment is complex, and it is easy to cause cracks and other faults. Effective rolling bearing fault diagnosis can provide an important guarantee for the safe operation of the track while improving the resource utilization of the rolling bearing and greatly reducing the cost of operation. Aiming at the problem that the characteristics of the vibration data of the rolling bearing components of the railway train and the vibration mechanism model are difficult to establish, a method for long-term faults diagnosis of the rolling bearing of rail trains based on Exponential Smoothing Predictive Segmentation and Improved Ensemble Learning Algorithm is proposed. Firstly, the sliding time window segmentation algorithm of exponential smoothing is used to segment the rolling bearing vibration data, and then the segmentation points are used to construct the localized features of the data. Finally, an Improved AdaBoost Algorithm (IAA) is proposed to enhance the anti-noise ability. IAA, Back Propagation (BP) neural network, Support Vector Machine (SVM), and AdaBoost are used to classify the same dataset, and the evaluation indexes show that the IAA has the best classification effect. The article selects the raw data of the bearing experiment platform provided by the State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University and the standard dataset of the American Case Western Reserve University for the experiment. Theoretical analysis and experimental results show the effectiveness and practicability of the proposed method.

Funder

National Nature Science Foundation under Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3