Abstract
It is difficult to detect roll marks on hot-rolled steel plates as they have a low contrast in the images. A periodical defect detection method based on a convolutional neural network (CNN) and long short-term memory (LSTM) is proposed to detect periodic defects, such as roll marks, according to the strong time-sequenced characteristics of such defects. Firstly, the features of the defect image are extracted through a CNN network, and then the extracted feature vectors are inputted into an LSTM network for defect recognition. The experiment shows that the detection rate of this method is 81.9%, which is 10.2% higher than a CNN method. In order to make more accurate use of the previous information, the method is improved with the attention mechanism. The improved method specifies the importance of inputted information at each previous moment, and gives the quantitative weight according to the importance. The experiment shows that the detection rate of the improved method is increased to 86.2%.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献