Anomaly Detection of CAN Bus Messages Using A Deep Neural Network for Autonomous Vehicles

Author:

Zhou ,Li ,Shen

Abstract

The in-vehicle controller area network (CAN) bus is one of the essential components for autonomous vehicles, and its safety will be one of the greatest challenges in the field of intelligent vehicles in the future. In this paper, we propose a novel system that uses a deep neural network (DNN) to detect anomalous CAN bus messages. We treat anomaly detection as a cross-domain modelling problem, in which three CAN bus data packets as a group are directly imported into the DNN architecture for parallel training with shared weights. After that, three data packets are represented as three independent feature vectors, which corresponds to three different types of data sequences, namely anchor, positive and negative. The proposed DNN architecture is an embedded triplet loss network that optimizes the distance between the anchor example and the positive example, makes it smaller than the distance between the anchor example and the negative example, and realizes the similarity calculation of samples, which were originally used in face detection. Compared to traditional anomaly detection methods, the proposed method to learn the parameters with shared-weight could improve detection efficiency and detection accuracy. The whole detection system is composed of the front-end and the back-end, which correspond to deep network and triplet loss network, respectively, and are trainable in an end-to-end fashion. Experimental results demonstrate that the proposed technology can make real-time responses to anomalies and attacks to the CAN bus, and significantly improve the detection ratio. To the best of our knowledge, the proposed method is the first used for anomaly detection in the in-vehicle CAN bus.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Adventures in automotive networks and control units;Miller;Def Con.,2013

2. A survey of security and privacy in connected vehicles;Othmane,2015

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-based anomaly identification techniques for vehicles communication protocol systems: Comprehensive investigation, research opportunities and challenges;Internet of Things;2024-10

2. Anomaly Detection for In-Vehicle Network Using Self-Supervised Learning With Vehicle-Cloud Collaboration Update;IEEE Transactions on Intelligent Transportation Systems;2024-07

3. Unsupervised Anomaly Detection for Automotive CAN Bus on the Intel Loihi;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Cognitive Detection of Anomalies in Autonomous In-Vehicle Network Communication;2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI);2024-06-21

5. Unsupervised intrusion detection system for in-vehicle communication networks;Journal of Safety Science and Resilience;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3