Abstract
Photovoltaic (PV) power is attracting more and more concerns. Power output prediction, as a necessary technical requirement of PV plants, closely relates to the rationality of power grid dispatch. If the accuracy of power prediction in PV plants can be further enhanced by forecasting, stability of power grid will be improved. Therefore, a 1-h-ahead power output forecasting based on long-short-term memory (LSTM) networks is proposed. The forecasting output of the model is based on the time series of 1-h-ahead numerical weather prediction to reveal the spatio-temporal characteristic. The comprehensive meteorological conditions, including different types of season and weather conditions, were considered in the model, and parameters of LSTM models were investigated simultaneously. Analysis of prediction result reveals that the proposed model leads to a superior prediction performance compared with traditional PV output power predictions. The accuracy of output power prediction is enhanced by 3.46–13.46%.
Funder
the Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献