Abstract
Automated tongue segmentation is a critical component of tongue diagnosis, especially in Traditional Chinese Medicine (TCM), where it has been practiced for thousands of years and is generally considered pain-free and non-invasive. Therefore, a more precise, fast, and robust tongue segmentation system to automatically segment tongue images from its raw format is necessary. Previous algorithms segmented the tongue in different ways, where the results are either inaccurate or time-consuming. Furthermore, none of them developed a dedicated, automatic segmentation system. In this paper, we proposed TongueNet, which is a precise and fast automatic tongue segmentation system. U-net is utilized as the segmentation backbone applying a small-scale image dataset. Besides this, a morphological layer is proposed in the latter stages of the architecture. The proposed system when applied to a tongue image dataset with 1000 images, achieved the highest Pixel Accuracy of 98.45% and consumed 0.267 s per picture on average, which outperformed conventional state-of-the-art tongue segmentation methods in both accuracy and speed. Extensive qualitative and quantitative experiments showed the robustness of the proposed system concerning different positions, poses, and shapes. The results indicate a promising step in achieving a fully automated tongue diagnosis system.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference33 articles.
1. Cambridge Academic Content Dictionary;Press,2017
2. Tongue Diagnosis in Chinese Medicine;Maciocia,1995
3. Atlas of Chinese Tongue Diagnosis;Kirschbaum,2000
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献