Content-Adaptive Light Field Contrast Enhancement Using Focal Stack and Hierarchical Network

Author:

Guo Xiangyan12,Guo Jinhao12,Yuan Zhongyun12,Cheng Yongqiang12

Affiliation:

1. College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Light field (LF) cameras can capture a scene’s information from all different directions and provide comprehensive image information. However, the resulting data processing commonly encounters problems of low contrast and low image quality. In this article, we put forward a content-adaptive light field contrast enhancement scheme using a focal stack (FS) and hierarchical structure. The proposed FS set contained 300 light field images, which were captured using a Lytro-Illum camera. In addition, we integrated the classical Stanford Lytro Light Field Archive and JPEG Pleno Database. Specifically, according to the global brightness, the acquired LF images were classified into four different categories. First, we transformed the original LF FS into a depth map (DMAP) and all-in-focus (AIF) image. The image category was preliminarily determined depending on the brightness information. Then, the adaptive parameters were acquired by the corresponding multilayer perceptron (MLP) network training, which intrinsically enhanced the contrast and adjusted the light field image. Finally, our method automatically produced an enhanced FS based on the DMAP and AIF image. The experimental comparison results demonstrate that the adaptive values predicted by our MLP had high precision and approached the ground truth. Moreover, compared to existing contrast enhancement methods, our method provides a global contrast enhancement, which improves, without over-enhancing, local areas. The complexity of image processing is reduced, and real-time, adaptive LF enhancement is realized.

Funder

Key Research and Development Program of Shanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3