Affiliation:
1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
2. China Ocean Shipping Agency Tianjin Co., Ltd., Tianjin 300456, China
3. Qingdao New Qianwan Container Terminal Co., Ltd., Qingdao 266000, China
Abstract
Automatic Container Code Recognition (ACCR) is critical for enhancing the efficiency of container terminals. However, existing ACCR methods frequently fail to achieve satisfactory performance in complex environments at port gates. In this paper, we propose an approach for accurate, fast, and compact container code recognition by utilizing YOLOv4 for container region localization and Deeplabv3+ for character recognition. To enhance the recognition speed and accuracy of YOLOv4 and Deeplabv3+, and to facilitate their deployment at gate entrances, we introduce several improvements. First, we optimize the feature-extraction process of YOLOv4 and Deeplabv3+ to reduce their computational complexity. Second, we enhance the multi-scale recognition and loss functions of YOLOv4 to improve the accuracy and speed of container region localization. Furthermore, we adjust the dilated convolution rates of the ASPP module in Deeplabv3+. Finally, we replace two upsampling structures in the decoder of Deeplabv3+ with transposed convolution upsampling and sub-pixel convolution upsampling. Experimental results on our custom dataset demonstrate that our proposed method, C-YOLOv4, achieves a container region localization accuracy of 99.76% at a speed of 56.7 frames per second (FPS), while C-Deeplabv3+ achieves an average pixel classification accuracy (MPA) of 99.88% and an FPS of 11.4. The overall recognition success rate and recognition speed of our approach are 99.51% and 2.3 ms per frame, respectively. Moreover, C-YOLOv4 and C-Deeplabv3+ outperform existing methods in complex scenarios.
Funder
National Key R&D Program of China
National Natural Science Foundation of China