Multitask Learning-Based Affective Prediction for Videos of Films and TV Scenes

Author:

Su Zhibin123ORCID,Lin Shige3,Zhang Luyue23,Feng Yiming23,Jiang Wei12

Affiliation:

1. State Key Laboratory of Media Convergence and Communication, Beijing 100024, China

2. Key Laboratory of Acoustic Visual Technology and Intelligent Control System, Ministry of Culture and Tourism, Beijing 100024, China

3. School of Information and Communication Engineering, Communication University of China, Beijing 100024, China

Abstract

Film and TV video scenes contain rich art and design elements such as light and shadow, color, composition, and complex affects. To recognize the fine-grained affects of the art carrier, this paper proposes a multitask affective value prediction model based on an attention mechanism. After comparing the characteristics of different models, a multitask prediction framework based on the improved progressive layered extraction (PLE) architecture (multi-headed attention and factor correlation-based PLE), incorporating a multi-headed self-attention mechanism and correlation analysis of affective factors, is constructed. Both the dynamic and static features of a video are chosen as fusion input, while the regression of fine-grained affects and classification of whether a character exists in a video are designed as different training tasks. Considering the correlation between different affects, we propose a loss function based on association constraints, which effectively solves the problem of training balance within tasks. Experimental results on a self-built video dataset show that the algorithm can give full play to the complementary advantages of different features and improve the accuracy of prediction, which is more suitable for fine-grained affect mining of film and TV scenes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3