Depth Completion with Anisotropic Metric, Convolutional Stages, and Infinity Laplacian

Author:

Lazcano Vanel1ORCID,Calderero Felipe2

Affiliation:

1. Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Chile

2. CPTO @ Ladorian—Nuclio Digital School, 28002 Madrid, Spain

Abstract

Depth map estimation is crucial for a wide range of applications. Unfortunately, it often presents missing or unreliable data. The objective of depth completion is to fill in the “holes” in a depth map by propagating the depth information using guidance from other sources of information, such as color. Nowadays, classical image processing methods have been outperformed by deep learning techniques. Nevertheless, these approaches require a significantly large number of images and enormous computing power for training. This fact limits their usability and makes them not the best solution in some resource-constrained environments. Therefore, this paper investigates three simple hybrid models for depth completion. We explore a hybrid pipeline that combines a very efficient and powerful interpolator (infinity Laplacian or AMLE) and a series of convolutional stages. The contributions of this article are (i) the use a Texture+Structuredecomposition as a pre-filter stage; (ii) an objective evaluation with three different approaches using KITTI and NYU_V2 data sets; (iii) the use of an anisotropic metric as a mechanism to improve interpolation; and iv) the inclusion of an ablation test. The main conclusions of this work are that using an anisotropic metric improves model performance, and the ablation test demonstrates that the model’s final stage is a critical component in the pipeline; its suppression leads to an approximate 4% increase in MSE. We also show that our model outperforms state-of-the-art alternatives with similar levels of complexity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3