Research on the Characteristic State of Rockfill Materials and the Evolution Mechanism at the Microscopic Scale

Author:

Cui Yunchao12ORCID,Zhang Lingkai12ORCID,Shi Chong123ORCID,Zhang Runhan12

Affiliation:

1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

2. Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention, Xinjiang Agricultural University, Urumqi 830052, China

3. Geotechnical Research Institute, Hohai University, Nanjing 210098, China

Abstract

In this study, the real particle morphology of rockfill materials is obtained through three-dimensional scanning technology, and flexible boundary conditions are established by coupling the discrete element method and the finite element method. Then, a large-scale three-axis numerical simulation test is carried out on the rockfill materials to study the macroscopic mechanical properties and the change rule of the microscopic view of the rockfill materials in different characteristic states. The macroscopic results show that the stress–strain curves of the rockfill materials can be divided into softening and hardening curves. The phase transition, peak, and critical states of the softening-type curves show different mechanical properties, but no clear distinction between the characteristic state changes can be seen in the hardening-type curves. The microscopic results show that the displacement of the upper and lower parts of the flexible boundary of the softening curve increases with loading, and there is no obvious displacement in the middle part, but the middle particles undergo rotational deformation. An “X” shear band appears, and the strength of the force chain and the coordination number tend to increase first and then decrease. The flexible boundary displacements of the hardening-type curves are similar to those of the softening-type curves, but the central particles show a large number of cleavages instead of shear zones, and the force chain strength and coordination number levels show a continuous upward trend.

Funder

the National Natural Science Foundation of China

Outstanding Youth Science Fund Project of Xinjiang Uygur Autonomous Region of China

Key R & D Tasks of Xinjiang Uygur Autonomous Region of China

The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Postgraduate research project of Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention in 2022 of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3