Synthesis and Biological Studies of New 2-Benzoxazolinone Derivatives as Antibacterial Agents

Author:

Šiugždaitė Jūratė1ORCID,Lelešius Raimundas1,Grybaitė Birutė2ORCID,Vaickelionienė Rita2,Mickevičius Vytautas2ORCID

Affiliation:

1. Department of Pathobiology, Lithuanian University of Health Sciences, Tilžės Street 18, 47181 Kaunas, Lithuania

2. Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Road 19, 50254 Kaunas, Lithuania

Abstract

In the present study, new series of benzoxazolin-2-one linked to a variety of hydrazones and azoles were synthesized and assessed for their antibacterial properties against different bacterial microorganisms. All the synthesized target compounds were characterized by 1H NMR, 13C NMR and IR spectroscopy, and elemental analysis as well. The antibacterial activity of the synthesized compounds was evaluated according to the bacteriostatic and bactericidal activity against the tested pathogen strains by determining the minimum inhibition (MIC) and minimum bactericidal (MBC) concentrations and MBC/MIC ratios. The MIC was evaluated by the broth dilution and the MBC was evaluated by plating methods. The in vitro analysis suggested that some compounds, namely, amide, 5-chlorobenzimidazole, hydrazones with a 3-chloro substitution on the additional phenyl ring, and hydrazones with 2-furyl and 5-nitro-2-furyl substituents, demonstrated wide antibacterial activity against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Salmonella Enteritidis. The most sensitive strains appeared to be Gram-negative E. coli and Gram-positive B. subtilis, while S. aureus showed some resistance. The most resistant pathogen was found to be S. enteritidis. The remaining compounds demonstrated moderate to low antibacterial potential. The research results have shown that benzoxazolinone-based derivatives are suitable for the development of a library of compounds and can be used in the future development of antibacterial drugs against various Gram-positive and Gram-negative pathogens, which is of great importance in therapy practice.

Publisher

MDPI AG

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3