Influence of Vehicle Wake on the Control of Towed Systems

Author:

Gu Jinjing1,Wang Zhibo1

Affiliation:

1. School of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

The hydrodynamic wake generated by the underwater vehicle’s motion has a considerable impact on the movement of the towed system underwater. This paper utilizes the lumped mass method to model the towed cable in order to improve the accuracy of predicting its position and attitude in the wake, and to determine the suitable cable-towed position. Velocity is transferred from the flow field to the cable dynamic model in an innovative way to imitate the motion of the cable. Several iterations are conducted to enhance the dynamic reactivity of the cable system. Numerical simulations are used to model both the straight towed and turning movements. The numerical calculation provides the characteristics of vorticity in the flow field formed by the energy exchange between the vorticity and the cable, as well as the gradually dissipating vorticity and momentum exchange characteristics at the trailing edge of the enclosure. The results indicate that the best location for the cable towed is where its motion does not cause any adhesion. On the other hand, the disadvantageous scenario for cable-towed systems occurs when the cable’s movement causes substantial adhesion. This paper innovatively establishes a model of mechanical energy exchange, describes the characteristics of energy exchange between the cable and fluid dynamics, and divides the four regions of cable motion. In the manipulation state, the dynamic energy exchange between the cable and the wake results in the transient vibration response of the cable. The fluid structure coupling method can accurately determine the separation region of the towed point of the vehicle based on its compatibility (non-adhesive) and incompatibility (adhesive). The boundary of the region is defined to distinguish a free tow point from a wall-attached tow point. A transition zone has the possibility to change the pattern from a free tow to a wall-attached tow. The wake can be divided into free tow region, transition zone, and adjacent wall tow region by this fluid structure interaction assessment method.

Funder

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Reference30 articles.

1. Chase, N. (2012). Simulations of the DARPA Sub-Off Submarine Including Self-Propulsion with the E1619 Propeller. [Master’s Thesis, University of Iowa].

2. A case study: Theoretical and experimental analysis of motion characteristics of a trimaran hull form;Hebblewhite;Ships Offshore Struct.,2007

3. Numerical simulation of undersea cable dynamics;Ablow;Ocean Eng.,1983

4. Research on the factors affecting the stable attitude of marine towed systems;Yuan;Sci. Technol. Eng.,2013

5. A numerical investigation on quasi-static configuration and nonlinear dynamic response characteristics of marine towed cable;Guo;Ocean Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3