Multi-Stage Metallogenesis and Fluid Evolution of the Hongtoushan Cu-Zn Volcanogenic Massive Sulfide Deposit, Liaoning Province, China: Constraints from Sulfur Isotopes, Trace Elements, and Fluid Inclusions

Author:

You Xinwei1ORCID,Wang Ende1,Fu Jianfei1,Men Yekai12

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. School of Resource & Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

Abstract

The Hongtoushan Cu-Zn volcanogenic massive sulfide (VMS) deposit, located in the Hunbei granite–greenstone terrane of the North China Craton, has undergone a complex, multi-stage metallogenic evolution. The deposit comprises three main types of massive ores: Type-1 ores, characterized by a sulfide matrix enclosing granular quartz and dark mineral aggregates; Type-2 ores, distinguished by large pyrite and pyrrhotite porphyroblasts and a small amount of gangue minerals; and Type-3 ores, mainly distributed in the contact zone between the ore body and gneiss, featuring remobilized chalcopyrite and sphalerite filling the cracks of pyrite. The metallogenic process of the Hongtoushan deposit is divided into three main stages: (1) an early mineralization stage forming Type-1 massive ores; (2) a metamorphic recrystallization stage resulting in Type-2 massive ores with distinct textural features; and (3) a late-stage mineralization event producing Type-3 massive ores enriched in Cu, Zn, and other metals. This study integrates sulfur isotope, trace elements, and fluid inclusion data to constrain the sources of ore-forming materials, fluid evolution and metallogenic processes of the deposit. Sulfur isotope analyses of sulfide samples yield δ34S values ranging from −0.7 to 4.2 (mean: 1.8 ± 1.5, 1σ), suggesting a predominant magmatic sulfur source with possible contributions from Archean seawater. Trace element analyses of pyrite grains from different ore types reveal a depletion of rare earth elements, Cu, and Zn in Type-2 massive ores due to metamorphic recrystallization, and a subsequent re-enrichment of these elements in Type-3 massive ores. Fluid inclusion studies allowed for identifying three types of ore-forming fluids: Type-1 (avg. Th: 222.9; salinity: 6.74 wt.% NaCl eqv.), Type-2 (avg. Th: 185.72; salinity: 16.56 wt.% NaCl eqv.), and Type-3 (avg. Th: 184.81; salinity: 16.22 wt.% NaCl eqv.), representing a complex evolution involving cooling, water–rock interaction and fluid mixing. This multi-disciplinary study reveals the interplay of magmatic, hydrothermal and metamorphic processes in the formation of the Hongtoushan VMS deposit, providing new insights into the fluid evolution and metallogenic mechanisms of similar deposits in ancient granite–greenstone terranes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3