Semantic Segmentation Method for Road Intersection Point Clouds Based on Lightweight LiDAR

Author:

Ren Xiaole1,Yu Bin1,Wang Yuchen1

Affiliation:

1. School of Transportation, Southeast University, Nanjing 211189, China

Abstract

Lightweight LiDAR, characterized by its ease of use and cost-effectiveness, offers advantages in road intersection information acquisition. This study used lightweight LiDAR to collect 3D point cloud data from an urban road intersection and propose a semantic segmentation model based on the improved RandLA-Net. Initially, raw data from multiple positions and perspectives were obtained, and complete road intersection point clouds were stitched together using the iterative closest point algorithm for sequential registration. Subsequently, a semantic segmentation method for point clouds based on the improved RandLA-Net was proposed. This method included a spatial information encoding module based on feature similarities and a feature enhancement module based on multi-pooling fusion. This model optimized the feature aggregation capabilities during downsampling with the weighted cross-entropy loss function applied to reduce the impact of input sample scale imbalances. In comparisons of the improved RandLA-Net with PointNet++ and RandLA-Net on the same dataset, our method showed improved segmentation accuracy for various categories. The overall prediction accuracy on two road intersection point cloud test sets was 87.68% and 89.61%, with average F1 scores of 82.76% and 80.61%, respectively. Most notably, the prediction accuracy for road surface areas reached 94.48% and 94.79%. The results show that our model can enrich the spatial feature expression of input data and enhance semantic segmentation performance in road intersection scenarios.

Funder

Natural Resources Science and Technology Program of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3