Optimization of Cutting Parameters for Energy Efficiency in Wire Electrical Discharge Machining of AISI D2 Steel

Author:

González-Rojas Hugo Orlando1,Miranda-Valenzuela José Carlos2ORCID,Calderón-Najera Juan de Dios3ORCID

Affiliation:

1. Tecnologico de Monterrey, School of Engineering and Sciences, Toluca 50110, Mexico

2. Tecnologico de Monterrey, School of Engineering and Sciences, Ciudad de México 14380, Mexico

3. Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico

Abstract

Improving energy efficiency in manufacturing processes is a critical global concern for the industry. Manufacturers strive to enhance energy efficiency across all manufacturing operations to remain competitive globally, aiming to reduce production times without compromising product quality. While there has been significant research characterizing energy efficiency and surface roughness in conventional processes like turning or milling, studies on unconventional manufacturing techniques are limited. This study focuses on optimizing a wire electrical discharge machining (WEDM) process to minimize energy consumption while maintaining surface roughness. Various cutting parameters, such as pulse on-time, pulse off-time, servo voltage, wire tension, wire speed, and wire voltage, were evaluated. Experiments were conducted using Taguchi’s methodology with a L27 orthogonal array, employing AISI D2 steel plates of 19 mm and 25 mm thickness as the machining material. The research identified that optimal parameters for reducing energy consumption and improving surface roughness included a pulse on-time of 10 s, pulse off-time of 11 s, servo voltage of 44 V, wire tension of 50 g-force, wire speed of 7 m per minute, and wire voltage of 9 volts. This combination led to an 8% reduction in energy consumption and a 1% enhancement in surface roughness compared to baseline values.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3