Combustion and Emission Characteristics of a Diesel Engine with a Variable Injection Rate

Author:

Chen Jun1,Shi Guanyu1,Wu Jinzhe2,Cao Chenghao1,Zhou Lei1,Xu Wu3,Wang Sheng1,Li Xiaofeng1

Affiliation:

1. College of Power Engineering, Naval University of Engineering, Wuhan 430030, China

2. School of Electronic Engineering, Naval University of Engineering, Wuhan 430030, China

3. Shanxi Diesen Heavy Industry Co., Ltd., Xianyang 712000, China

Abstract

Diesel engine combustion is dependent mainly on the fuel injection characteristics, particularly the injection pressure and rate, which directly affect the engine efficiency and emissions. Herein, an electrically controlled supercharger is added to a traditional high-pressure common rail system to form an ultrahigh-pressure common rail system. Then, the variations in the spray, combustion, and emission characteristics of a diesel engine with a variable fuel injection rate are analyzed. Moreover, a simulation model for a diesel engine combustion chamber is built and verified by experimental results for numerical analysis. The results reveal that the injection rate can be flexibly adjusted via regulation when the solenoid valves are opened on the electrically controlled supercharger. Specifically, (1) the boot-shaped injection rate has greater potential than the traditional rectangular injection rate in terms of combustion and emission; (2) the main injection advance angle at the boot-shaped injection rate can be properly increased to improve combustion; and (3) the pilot injection quantity and advance angle are strongly coupled with the boot-shaped injection rate, potentially enhancing the mixing efficiency of fuel and air in the cylinder to achieve favorable emission results. This paper provides good guidance for the reliable design and optimization of noble-metal-based diesel engines.

Funder

Postdoctoral Fellowship Program of CPSF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3