New Approach for Brain Tumor Segmentation Based on Gabor Convolution and Attention Mechanism

Author:

Cao Yuan1,Song Yinglei1

Affiliation:

1. School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

In the treatment process of brain tumors, it is of great importance to develop a set of MRI image segmentation methods with high accuracy and low cost. In order to extract the feature information for each region of the brain tumor more effectively, this paper proposes a new model Ga-U-Net based on Gabor convolution and an attention mechanism. Based on 3D U-Net, Gabor convolution is added at the shallow layer of the encoder, which is able to learn the local structure and texture information of the tumor better. After that, the CBAM attention mechanism is added after the output of each layer of the encoder, which not only enhances the network’s ability to perceive the brain tumor boundary information but also reduces some redundant information by allocating the attention to the two dimensions of space and channel. Experimental results show that the model performs well for multiple tumor regions (WT, TC, ET) on the brain tumor dataset BraTS 2021, with Dice coefficients of 0.910, 0.897, and 0.856, respectively, which are improved by 0.3%, 2%, and 1.7% compared to the base network, the U-Net network, with an average Dice of 0.887 and an average Hausdorff distance of 9.12, all of which are better than a few other state-of-the-art deep models for biomedical image segmentation.

Funder

Jiangsu University of Science and Technology

Publisher

MDPI AG

Reference30 articles.

1. Cancer statistics, 2015;Siegel;CA Cancer J. Clin.,2015

2. Zhang, T. (2022). Research on MRI Brain Tumor Classification and Segmentation Method Based on Deep Learning. [Master’s Thesis, Yanshan University].

3. Review on brain tumor segmentation of MRI images;Wadhwa;Magn. Reson. Imaging,2019

4. Deep learning based brain tumor segmentation: A survey;Liu;Complex Intell. Syst.,2023

5. Medical image segmentation: A review;Patil;Int. J. Comput. Sci. Mob. Comput.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3