Real-Time Motion Blur Using Multi-Layer Motion Vectors

Author:

Lee Donghyun1,Kwon Hyeoksu1,Oh Kyoungsu1

Affiliation:

1. Computer Graphics Laboratory, School of Media, Soongsil University, Seoul 06978, Republic of Korea

Abstract

Traditional methods for motion blur, often relying on a single layer, deviate from the correct colors. We propose a multilayer rendering method that closely approximates the motion blur effect. Our approach stores motion vectors for each pixel, divides these vectors into multiple sample points, and performs a backward search from the current pixel. The color at a sample point is sampled if it shares the same motion vector as its origin. This procedure repeats across layers, with only the nearest color values sampled for depth testing. The average color sampled at each point becomes that of the motion blur. Our experimental results indicate that our method significantly reduces the color deviation commonly found in traditional approaches, achieving structural similarity index measures (SSIM) of 0.8 and 0.92, which represent substantial improvements over the accumulation method.

Funder

the Korea government

Publisher

MDPI AG

Reference21 articles.

1. Andersson, M., and Hasselgren, J. (2011, January 5–7). Depth Buffer Compression for Stochastic Motion Blur Rasterization. Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, Vancouver, BC, Canada.

2. Motion Blur Rendering, State of the Art;Navarro;Comput. Graph. Forum,2011

3. Minh Phuoc, H., and Kyoungsu, O. (2017). Motion Blurred Shadows Using a Hybrid Approach, Springer. International Conference on Multimedia and Ubiquitous Engineering.

4. McGuire, M., Hennessy, P., Bukowski, M., and Osman, B. (2012, January 9–11). Reconstruction Filter for Plausible Motion Blur. Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Costa Mesa, CA, USA.

5. Guertin, J.P., McGuire, M., and Nowrouzezahrai, D. (2014, January 23–25). A Fast and Stable Feature-Aware Motion Blur Filter. Proceedings of the High Performance Graphics, Lyon, France.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3