LSH Models in Federated Recommendation

Author:

Dai Huijun12ORCID,Zhu Min13,Gui Xiaolin12

Affiliation:

1. School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

2. Shanxi Province Key Laboratory of Computer Network, Xi’an Jiaotong University, Xi’an 710049, China

3. Suzhou Academy, Xi’an Jiaotong University, Suzhou 215123, China

Abstract

Given the challenges in recommendation effectiveness, communication costs, and privacy issues associated with federated learning, the current algorithm amalgamates locality sensitive hash (LSH) with three federated recommendation models: Generalized Matrix Factorization, Multilayer Perceptions, and Neural Matrix Factorization. First, the participation weights of the model are determined based on the participation degree of the federated learning clients to improve the efficiency of joint learning. Second, the local parameters of the federated aggregation model are divided into two groups to protect user embedding. Finally, rapid mapping and similarity retrieval of the upload parameters are performed using LSH to protect user privacy and shorten training time. We conducted experiments to compare the performance differences between LSH-based and Laplace noise-based differential privacy methods in terms of recommendation effectiveness, communication costs, and privacy preservation. Experimental results demonstrate that LSH models achieved a favorable balance between recommendation effectiveness and privacy protection, with improved time performance.

Funder

Fundamental Research Funds for the Central Universities

the Natural Science Basic Research Programme Project of Ningxia Province

Special Project of Grassroots Teaching Organisation ‘Exploration of Modular Teaching Reform of Introduction to Information Security’

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3