Finite Element Analysis on the Behavior of Solidified Soil Embankments on Piled Foundations under Dynamic Traffic Loads

Author:

Guo Qianqian12,Li Bingyi3,Ye Zi12ORCID,Xu Jie12

Affiliation:

1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China

2. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China

3. College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

Abstract

Most research conducted so far has primarily focused on pile-supported gravel embankments. The ability of solidified soil used as an embankment filling material has been verified, and a clear view on the performance of solidified soil embankments on piled foundations is rather limited. The three-dimensional unit cell models of pile-supported embankments are conducted to investigate the performance of solidified soil embankments in comparison to gravel embankments under static and dynamic loads. Then, a systematic parametric analysis is performed to investigate the effects of various factors, including the cohesion and friction of solidified soil, the velocity and wheel load of vehicles, the pile spacing, the height of embankments. The results show that, compared with the results of gravel embankments, the heights of the outer soil arch plane in solidified soil embankments reduces under static and dynamic loads, and the piles bear more load. In addition, the total settlements of solidified soil embankments decrease with increasing cohesions, and there is an economical cohesion of 25 kPa. The vehicle wheel load, pile spacing, and the height of embankment significantly influence the load transfer mechanism and total settlement of solidified soil embankment, while the friction angles and velocities have little effect on the total settlements and vertical stress. The relationship between the soil arch height and various parameters in solidified soil embankments is established by multiple regression analysis. This investigation highlights the advantage of solidified soil in reducing total settlement and provides an insightful understanding of the load transfer mechanism of solidified soil embankment on piled foundation.

Funder

the Central University Basic Research Fund of China

Graduate Research and Innovation Projects of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3