Affiliation:
1. Chemical Process & Energy Resources Institute, CERTH, 6th km Harilaou-Thermi Rd, 57001 Thessaloniki, Greece
2. Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
Abstract
The extensive release of carbon dioxide (CO2) into the atmosphere is associated with the detrimental impacts of the global environmental crisis. Consequently, the valorization of CO2 from industrial processes holds great significance. Transforming CO2 into high added-value products (e.g., CH4, C1-C3 deoxygenated products) has attracted considerable attention. This is feasible through the reverse water–gas shift (RWGS) and Fischer–Tropsch synthesis (FTS) reactions; CO is initially formed and then hydrogenated, resulting in the production of hydrocarbons. Iron-based materials have a remarkable ability to catalyze both RWGS and FTS reactions, enhancing the olefinic nature of the resulting products. Within this context, iron-based nanoparticles, unsupported and supported on zeolite, were synthesized and physico-chemically evaluated, applying multiple techniques (e.g., BET, XRD, FT-IR, Raman, SEM/TEM, DLS, NH3-TPD, CO2-TPD). Preliminary experiments show the potential for the production of C2+ deoxygenated products. Among the tested samples, supported Fe3O4 and Na-Fe3O4 (A) nanoparticles on HZSM-5 are the most promising for promoting CO2 valorization into products with more than two carbon atoms. Results demonstrate that product distribution is highly affected by the presence of acid sites, as low-medium acid sites and medium acidity values enable the formation of C2+ hydrocarbons.
Funder
PROMETHEUS: A Research Infrastructure for the Integrated Energy Chain
Reinforcement of the Research and Innovation Infrastructure
Operational Programme “Competitiveness, Entrepreneurship and Innovation”
Greece and the European Union
Reference75 articles.
1. (2023, October 24). CO2 Emissions in 2022; International Energy Agency. Available online: https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/CO2Emissionsin2022.pdf.
2. Core Writing Team, Lee, H., and Romero, J. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (IPCC).
3. Review of Solutions to Global Warming, Air Pollution, and Energy Security;Jacobson;Energy Environ. Sci.,2009
4. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins;Rothenberg;ChemSusChem,2019
5. Realization of Paris Agreement Pledges May Limit Warming Just below 2 °C;Meinshausen;Nature,2022