A CNN-LSTM-Attention Model for Near-Crash Event Identification on Mountainous Roads

Author:

Zhao Jing1,Yang Wenchen2ORCID,Zhu Feng3

Affiliation:

1. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China

2. National Engineering Research Center for Efficient Maintenance, Safety and Durability of Roads and Bridges, Broadvision Engineering Consultants Co., Ltd., Kunming 650200, China

3. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

To enhance traffic safety on mountainous roads, this study proposes an innovative CNN-LSTM-Attention model designed for the identification of near-crash events, utilizing naturalistic driving data from the challenging terrains in Yunnan, China. A combination of a threshold method complemented by manual verification is used to label and annotate near-crash events within the dataset. The importance of vehicle motion features is evaluated using the random forest algorithm, revealing that specific variables, including x-axis acceleration, y-axis acceleration, y-axis angular velocity, heading angle, and vehicle speed, are particularly crucial for identifying near-crash events. Addressing the limitations of existing models in accurately detecting near-crash scenarios, this study combines the strengths of convolutional neural networks (CNN), long short-term memory (LSTM) networks, and an attention mechanism to enhance model sensitivity to crucial temporal and spatial features in naturalistic driving data. Specifically, the CNN-LSTM-Attention model leverages CNN to extract local features from the driving data, employs LSTM to track temporal dependencies among feature variables, and uses the attention mechanism to dynamically fine-tune the network weights of feature parameters. The efficacy of the proposed model is extensively evaluated against six comparative models: CNN, LSTM, Attention, CNN-LSTM, CNN-Attention, and LSTM-Attention. In comparison to the benchmark models, the CNN-LSTM-Attention model achieves superior overall accuracy at 98.8%. Moreover, it reaches a precision rate of 90.1% in detecting near-crash events, marking an improvement of 31.6%, 14.8%, 63.5%, 8%, 23.5%, and 22.6% compared to the other six comparative models, respectively.

Funder

National Key Research and Development Program of China

Science and Technology Innovation Program of the Department of Transportation, Yunnan Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3