The Fault Diagnosis of a Plunger Pump Based on the SMOTE + Tomek Link and Dual-Channel Feature Fusion

Author:

Yang Xiwang12,Xu Xiaoyan2,Wang Yarong2,Liu Siyuan2,Bai Xiong3,Jing Licheng3,Ma Jiancheng2,Huang Jinying3

Affiliation:

1. School of Information and Communication Engineering, Shanxi University of Electronic Science and Technology, Linfen 041000, China

2. School of Computer Science and Technology, North University of China, Taiyuan 030051, China

3. School of Mechanical Engineering, North University of China, Taiyuan 030051, China

Abstract

Mechanical condition monitoring data in real engineering are often severely unbalanced, which can lead to a decrease in the stability and accuracy of intelligent diagnosis methods. In this paper, a fault diagnosis method based on the SMOTE + Tomek Link and dual-channel feature fusion is proposed to improve the performance of the sample imbalance fault diagnosis method, taking the piston pump of a turnout rutting machine as the research object. Combining the data undersampling method and the oversampling method to redistribute the collected normal data and fault data makes the diagnostic model have better diagnostic performance in the case of insufficient fault samples. And, in order to fully utilize the global features and local features, a global–local feature complementary module (GLFC) is proposed. Firstly, the generated data similar to the original data are constructed using the SMOTE + Tomek Link method; secondly, the generated data are input into a GLFC module and BiGRU at the same time, the GLFC module extracts the spatial global features and local features of the original vibration data, and BiGRU extracts the temporal information features of the original vibration data, and fuses the extracted feature information, and inputs the fused features into the attention layer; finally, a GLFC module is proposed by the SMOTE + Tomek Link method to make full use of the global features and local features. The extracted feature information is fused, and the fused features are input to the attention layer; finally, the fault classification is completed by the softmax classifier. In this paper, the accuracy and robustness of the proposed model are demonstrated through experiments.

Funder

Shanxi Scholarship Council of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3