Establishment and Accuracy Analysis of Measurement Control Network Based on Length–Angle Mixed Intersection Adjustment Model

Author:

Xiong Zhi12,Li Chunsen12,Zhang Hao12,Zhong Chenxiaopeng12,Zhai Zhongsheng12,Zhao Ziyue3

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

2. Hubei Key Laboratory of Modern Manufacture Quality Engineering, Wuhan 430068, China

3. AVIC Beijing Changcheng Institute of Metrology & Measurement, Beijing 100095, China

Abstract

To achieve high-precision measurements of target points on long straight tracks, a multi-level measurement method based on length–angle mixed intersection techniques was explored. Firstly, a control network with graded measurement levels was proposed, based on the spatial error characteristics of different measuring devices and the principle of nonlinear least squares, and a method for adjustment calculation based on length–angle mixed intersection was studied. Secondly, numerical simulation was conducted to assess the impact of instrument placement on measurement accuracy, and the results indicated that central positioning within the measurement range can effectively minimize the overall point location errors. Finally, the methodology was validated in a practical setting at a rocket sled test site. Experimental results demonstrated that, within a measurement range of approximately 669 m, when target points were located on one side of the track and distance measurements were used as benchmark values, the measurement control network achieved a distance standard deviation of 0.20 mm. The range of distance deviations was between −0.85 mm and 0.98 mm. This approach offers substantial reference value for high-precision coordinate measurements over extended distances.

Funder

Institute of Microelectronics of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3