Effects of Hiking-Dependent Walking Speeds and Slopes on Spatiotemporal Gait Parameters and Ground Reaction Forces: A Treadmill-Based Analysis in Healthy Young Adults

Author:

Kafetzakis Ioannis1ORCID,Konstantinou Ilias2,Mandalidis Dimitris1ORCID

Affiliation:

1. Sports Physical Therapy Laboratory, Department of Physical Education and Sports Science, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Ethnikis Antistasis 41, 17237 Athens, Greece

2. Research and Development Department, Serinth Ltd., Smyrnis 52, 14341 Athens, Greece

Abstract

Hiking offers both recreational enjoyment and physical challenges, requiring speed adjustments when traversing uphill and downhill slopes. These adjustments prompt compensatory responses in kinematics and kinetics to mitigate fatigue and musculoskeletal strains. The study aimed to explore the impact of slope-specific walking speeds on spatiotemporal gait parameters, vertical ground reaction forces (vGRFs), and position of the center of pressure (COP) during uphill and downhill walking. Thirty-two healthy individuals completed five 4-min walks on an instrumented treadmill set to 0% (level), +10%, and +20% (uphill), and −10% and −20% (downhill), slopes, at 5.0, 3.5, 2.5, 5.0 and 3.5 km h−1, respectively. Uphill walking led to reduced stride length and cadence, increased foot rotation, step time, and durations of stance, swing, and double-stance phases. Conversely, downhill walking exhibited decreased step length, step time, and durations of stance, swing, and double-stance phases but increased step width and cadence compared to level walking. Speed adjustments to accommodate slope led to reduced vGRFs for uphill and downhill walking. Additionally, the COP shifted forward during uphill and backward during downhill walking and displaced laterally as walking became more demanding. The observed responses indicate adaptations aimed at maintaining postural control, reducing excessive load application, and optimizing energy expenditure on sloping terrain.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3